
AD-A269 827

Reprinted from JOURNAL OF PHYSICAL OCEANOGRAPHY, Vol. 23. No. 5. May 1993
Amarnc M"vMVKW So--Xy

Topographic Jetogenesis and Transitions in Straits and along Continents

MELVIN E. STERN

OTIC_..•T•-• EE L E C Tr E

93-22405

!P' 927 0f1~h 0 p



846 JOURNAL OF PHYSICAL OCEANOGRAPHY Vot.tume 23

Topographic Jetogenesis and Transitions in Straits and along Continents

MELVIN E. STERN

Department of Oceanography, The Florida State Universtty. Tallahrasee. Florlda

(Manuscript received 2 December 1991, in final form 22 May 1992)

ABSTRACT

When a low Rossby number barotropic flow accelerates in the laterally converging half of a strait, the local
propagation speed of long topographic waves can be reduced to zero, thereby blocking or preventing the formation
of a steady flow downstream from the strait. An inviscid longwave theory is presented for the new steady
upstream and downstream states that evolve from the blocking wave. The enhanced inshore cyclonic vorticity
extending far downstream suggests that topographic jetogenesis, rather than lateral eddy diffusion, in major
ocean straits (e.g., Yucatan and Florida) may be important in generating or reforming boundary currents.

1. Introduction and simple considerations tropic flow, having the same specified potential vorucity

Steady barotropic currents tend to follow continental on the same streamline. Hydraulic transitions between

isobaths when the curvature and the Rossby number such end states are possible, but the theory does not

R are sufficientiy small. In a region of converging iso- address the question of the new upstream and down-

baths mass conservation requires the downstream ve- stream states that evolve when an arbitrary upstream

locity to increase, and potential vorticity conservation flow is blocked. In that case the spatial distribution of

requires cross-isobath motions to account for the rel- an entirefield of potential vorticity is modified, so that

ative vorticity changes. Thus the velocity field in a con- the problem becomes more difficult than the classical

verging channel can increase to a critical state such one (Long 1972) in which only one or two parameters

that the local propagation speed of long topographic (e.g., the fluid height) are necessary to describe the

waves vanishes, in which case no steady downstream upstream state. For this reason it is desirable to restrict

state exists for the given upstream flow. A theory will our problem to very simple fields of upstream potential

be developed for the new upstream and downstream vorticity, such that only a finite number of degrees of
freedom are involved in its modification. Herein lies

state as a function of the topographic convergence. th e i nce of is uniform pot eia lict

The "blocking" effect that occurs when the flow be- the folo win g invisuid r a oteopian f-plane

comes topographically critical is analogous to that in flow in the following inviscid, barotropic, and f-plane

classical, nonrotating open channel hydraulics (Long model,
Let us start by considering the steady flow shown in1972) when an obstacle is towed along the bottom of Fig. I, in which the distinctive feature of the topography

an otherwise resting layer of water with a speed greater is the relatively large convergence of the isobaths near

than that of long surface gravity waves. A wave of ele- the central axis of the channel, as compared with the

vation then forms with its trailing edge fixed near the

obstacle, and with its leading edge propagating ahead convergence near the sidewalls. The downstream (x*)

of the obstacle. In this way a new upstream state with gradient of isobathic depth h*(x*. y* ) is assumed small
anoincrease d o wtrcle. nthis wa ned, ustrellas state wh compared to the cross-isobath (y*) gradient. so thatan increased water level is produced, as well as a new -u*/ay* may be used as the long-wave approxi-
(supercritical) downstream state. Similar effects occur mation for the relative vorticity, where u* is the di-
in a rotating stratified fluid when it is blocked, and here mensional downstream velocity, and v* << 0 is the
it is the Kelvin wave propagation that is relevant. [See y* velocity component. Far upstream in Fig. I a uni-
the reduced gravity model of Gill (1977).] form u* = Uo is assumed, with Rossby number

The control effect of continental topography on a U 1, where f> 0 is the Coriolis parameter.
parallel current has been studied by several authors. Und er the Coriolis ter.

Hughs( 985 196, 987 hascomute paticlar Under this condition a first approximation to the law
Hughes ( f1985, 1986, 1987) has computed particular of conservation of potential vorticity requires the steady
"'conjugate" flow states, for stratified as well as baro- streamlines to coincide with the isobaths, as previously

mentioned. To conserve mass between laterally con-

Corresponding author address: Melvin E, Stern, Department of verging isobaths the velocity U* on the central axis
Oceanography, B- 169. The Florida State University, Tallahassee, FL must increase relative to Uo', whereas the wall velocities
32306-3048. U*1, U*2 change less. This implies that a jet forms in
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the converging half of the strait, with the necessary Z_
relative vorticities being produced by cross-isobath - W
stretching or squashing of columns. Thus the cyclonic /
vorticity at P, (Fig. 1 ) and the anticyclonic vorticity __

at P2, require cross-slope displacements as indicatedy-
by the arrows. 0, 1

All but one of the following calculations will be done
for models (Fig. 2) in which the smooth continental u- w0 I -D
slopes are replaced by escarpments (the dashed curves),
across which the nondimensional depth charges dis-
continuously from hi = I to h =3 > 1. The lateral
length scale is some W*, chosen (as convenient) to ------

make either W'O or W, or W2 equal to unity in Fig. 2, "
and the nondimensional D(x) gives the downstream
(x) variation in width of the deepest part of the channel
(the distance between escarpments). The uniform FIG. 2. An escarpment model as a limit of Fig. I. The depth is
upstream speed Uo is the velocity scale, U/IW* is uniform on the two "shelves" of uniform nondimensional widths
the vorticity scale, and the Rossby number is R 14 ,. 1'. The nondimensional depth increases(discontinuously)from

Uo*f:W*. unity to tt across the escarpments (dashed). Cyclonic vorticity ý is
generated in the strip of width L, located between the upper escarp-

The main problem is to predict the steady flow hay- ment and the interface (solid curve) separating the layers of uniform
ing three piecewise umiform potential vrt,:*cty layers, potential vorticity. Anticyclonic vorticity is generated in the L2 layer.

and a given total volume flux at each x. These three
layers are separated by two interfaces whose displace-
ments LI, L2 from their respective escarpments are
tentatively assumed positive in the -y direction (to Likewise, the magnitude of the anticyclonic vorticity
anticipate the jetlike profile in Fig. 2). in the L2 layer is •_ = ( 13- )/R, or

Since the upstream relative vorticity vanishes, and
since potential vorticity is conserved, the cross-escarp- - . (1.2)
ment stretching (03 - 1) of columns in the L! layer
produce the nondimensional vorticity According to the long-wave approximation the down-

stream velocity varies linearly in these two vortical lay-
)3- 1 ers, and outside the velocities UI, U, and U2 are in-

(1.1) dependent of y, where U is the uniform velocity in the
R central region, U1 is the upper-shelf velocity, and U2 is

the lower-shelf velocity.
It is instructive to consider first the simplest example.

in which both W1, W2 are much larger than WO = I,
in which case mass conservation in the relatively wide
regions (W1 , W2) requires U, = U2 ;. 1. Adding this

w' to the appropriate shear [Eq. ( 1. 1 ) or ( 1.2)] gives thevelocity U between the two interfaces

I + rLt = U = I + L2•'-, (1.3)

U.• and then Eq. (1.2) yields

U..

At any section x the total volume transport between
the two interfaces is the sum of two parts, one of which
[13U(D - L1 )] occurs in deep water, and the other
[ j (U + I )L21 occurs in the shallow anticyclonic layer.
This sum is independent ofx and equal to the transport

FIG. 1. Schematic diagram for steady, subcritical (low upstream Tis = s i at x = -io a so that
Rossby number) barotropic flow through a strait. The sketched iso-
baths converge more rapidly in midchannel than the isobaths near
the shores. The "zero-order" tendency for the flow to follow the I I + 'L )(D - LI) + ( I + 'L,/2)L2/#_
isobaths suggests a large U* must form in the highly convergent
central portion of the straits. The implied relative vorticities require The use of (1.4) then gives the quadratic equation 'odes
cross-isobath displacements at points P, and P2 as shown by the ar-
rows; WO isa characteristic channel width (dimensional). LI - 2DLI + 2(1 - D)/1 = 0 (i.5) or
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and the solution satisfying L, = 0 when D = I is 3a is dynamically equikalent to Fig. 2 when W1' - .
L -(D2 -- 2(1 - D)) 1 2. (1.6) (Such a model might b-xe realized in a long rotating

channel by towing an obstacle placed on a wall through

This is positive because D(x) < I, and thus our initial an otherwise resting liquid.) In this case a single inter-
assumption L, > 0, L, > 0 is verified. The discriminant face separates two regions of uniform potential Nornic-
of the quadratic vanishes at a section where ity, and R = U'•/f/'* and j are first assumed to be

such that a steady long-wave solution exists with L
D(x) - ± + + < = L(D(x)) -_ 0. As previously indicated ( 1.1 ), the rel-

'F ative vorticitv immediately above this interface is

in which case L, = D, L2 = 13D, and consequently a - 1
triangular jet forms having a maximum velocity R > 0 (2.1)

U = 1 + L, =(I - ' and below the interface the velocity U is independent
R / ofy,. The local volume transport U(D - L)0 in the

located on the lower escarpment. If R = UI/f W latter region must equal the value (1) at x 7 -i-., and
<< 1, where the central channel width W 0 now provides therefore
the W* scale, this U is very large compared to the
upstream current, and thus we see that pronounced U = . (2.2)
inviscidjetogenesis can occur in the laterally converging D - L'
half of a channel. The large values of the cyclonic and The shear above the interface (Fig. 3a) gives the velocity
anticyclonic vorticities may then cause separation as
the jet enters the diverging half of the channel (Stern U, = U - ýL (2.3)
and Whitehead 1990). This is one kind of transition
that would prevent a reversal of the vorticity generation at and above the escarpment. Therefore the total vol-
in the diverging half of the strait, and that would allow ume transport above this interface is U, W, + I ( U,
a jet to appear far downstream. + U)LO, and the latter must equal the transport 14'

For the smaller W1, W2 (narrower shelves in sections at x = - xo. Simplification of this equality using (2.2)-
2 and 3), a hydraulic transition or blocking can occur (2.3) yields
first, and the single shelf (W2 = 0) model in section 2 I + L0/1WI BL,
will address the main question, namely, what happens (2.4a)
if minD(x) is small enough to block the uniform up- D - L 2 W,
stream current. I + LOIW _

Both kinds of transition seem to be relevant to the D = L + (2.4b)
influence of major ocean straits on the circulation in I + ýL + 4L 2 W/2,' (
the basins they connect. One example is the Atlantic The implicit solution (2.4b) for L = L(D) reduces to
western boundary current, which appears to become D = 1 + L(,/6W, - " + I ) + - - -when L -- 0, and
very diffuse (and remote from boundaries) after en- since D < I a necessary condition for the L > 0 as-
tering the Caribbean Sea, and until it reforms as a jet sumption is
in the vicinity of the Straits of Yucatan (Gordon 1967;
Molinari et al. 1981 ). This Gulf Stream jet then passes > I +/3/W" (2.5a)
through the Gulf of Mexico, and enters the Straits of
Florida where the maximum mean inshore vorticity or
increases to a value approximately equal to the Coriolis
parameter (Brooks and Niiler 1977). It is unlikely that R < - 1 (2.5b)
this large inshore vorticity can be correctly explained 1 + 4/B,25
by a lateral diffusion mechanism and a proper expla-
nation should be based on an inertial (potential vor- The right-hand side of(2.4b) is positive and asymptotes
ticity conserving) mechanism, taking into account the to D = L when L is large. so that a minimum D = D)
isobaths (and the isopycnals) in the strait (Stern 1991 ). exists. This point separates two branches (Fig. 3b) hav-

ing different L values for the same D, and if min D
2. A converging channel with a single escurpment < D, no steady solution exists for the upstream flow

with uniform velocity.
In Fig. 3a W2 has been set equal to zero, W0 = I is For relatively large W Eq. 1. 4.4a) reduces to t qua-

the length unit, and D(x) < I is the distance between dratic equation
the curved lower wall and the escarpment. Note that
in a long-wave theory the curvature ofisobaths ic un- 1 2 D 0 (2.6)
important, compared to their Y separation, so that Fig. \ •
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a The minimum width D, of the strait necessar.y for
blocking in this case is given by setting the discriminam

dZ equal to zero, that is.U0= •= (D,- -4(1-D,.')/ - ID, +
__ _ W•! . • depth l I .

Y (2.8)

u--------------- and thereforeUo= I1
W 0 D -L I /I • " / - 2f

I d epDh = I D c = -2ý I 2 2 (= R . ( 2 .9 )

I Dm 0 -l1
x=0 For large W, Eqs. (2.2)-(2.4a) also imply

(b) U- 1, (2.9a)

L 7which is obviously required to satisfy the transport re-
lation W, U, = W, in the wide (W 1 > I ) region.
an.The question arises as to the physical consistency of
an inviscid escarpment model, and its relation to a
model with slightly smoother topography. Accordingly,
the critical value for (2.4b) has been compared (in the

D; Appendix) with the corresponding value for a model
having a smoother continental slope. The numerical

//,// // / , , results indicate that the inviscid escarpment limit is
approached asymptotically for large finite continental
slopes (in which case the lateral viscous stresses might

L(&p 1. be consistently neglected.) This justification of the es-
L(x , carpment model is necessary because it provides the

-only tractable nonlinear theory for obtaining the new
upstream state when the old one is blocked, as will be
seen. Before proceeding to this question, a physical ex-
planation of Fig. 3a, and motivating arguments for Fig.

1 111 ,/ / ,/ / 4 are in order.
FtG. 3. (a) Flow of a uniform upstream current Uo = I in a channel The appearance of a steady-state "trough" (i.e., L

with a single escarpment (dashed horizontal line). The distance D(x) 2 0 in Fig. 3a) can be qualitatively explained in terms
of this from the lower vertical wall varies slowly on the W0 = I length of well-known (e.g., Stern 1991 ) properties of free and
scale. The interface between the piecewise-uniform potential vorticity forced topographic long waves. Consider the evolution
layers is displaced downward (negative y) by an amount L(x) > 0 from time t = 0 when the fluid is resting with L(x, 0)
in the steady state. Above the interface nondimensional vorticity 0"
is thereby generated, and the velocity varies linearly between the 0, and then the strait (constriction) is moved leftward
values U, and U. (b) Sketch of a long wave solution for L as a with uniform speed (Fig. 3c). This obviously forces an
function of D. The branch point at D = D, is the smallest value initial transverse velocity v > 0 at x < 0, and v < 0 at
possible foragiven Rossby number at x = -. (c) Schematic diagram x > 0, so that the potential vorticity interface at small
of the temporal evolution of the potential vorticity interface [L(x, t, > 0 is deflected as shown. The vorticity generated
0) = 01 when a small amplitude constriction (the stipled "strait") is
suddenly moved leftward at t = 0 with a uniform subcritical speed. by the cross-escarpment displacement then causes rel-
The transverse velocities v forced at t = 0 tend to deflect the interface ative leftward phase (and group) propagation of L if
to L(x, 1,), and this generates relative vorticities whose sense is in- the relative upstream velocity is subcritical (i.e., smaller
dicated by the circular arrows. These vortices cause the interface to than the propagation speed of free topographic long
propagate to L(x, t2) for 12 > ti. As t - ac the ridge ahead of the
constriction continues propagating to x = -ao, whereas the trough waves). Therefore, at 12 > t, the L-ridge moves ahead
remains behind in equilibrium with the v forced by the constriction, of the strait and continues propagating to x = -oo as
as shown in (a). an unforced (free) wave. But the advance of the trough

eventually ceases under the influence of the forced v,
and the solution that vanishes at D = I is and thus the steady-state trough L > 0 (Fig. 3a) is

attained in the strait.
2 AL This picture applies to small values of ( I - D,),

and for larger ones a first-order nonlinear hyperbolic
1)2 "cop equation (Stern ,no, applies to the evo0utionary

- - 1)2 -- Dj/ > 0. (2.7) problem. In this case the current in the converging strait
may increase to a value such that the "local L-propa-
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gation speed" (according to the method of character- occur where OD/ax = 0, that is. atx = 0 where 1) = D,,,
istics) vanishes, at which point (x) the trailing edge of (Fig. 4), or
the ridge remains behind in the vicinity of the strait, (2.D
while the leading edge continues propagating to x (2.11)
= - oc in the locally subcritical region (D = I ). Figure M L),=
4 is a schematic diagram of this conjectured flow, as
seen by an observer on the strait. As I -- oc the up- This equation determines the fin-1 unknown in the L
stream propagating blocking ridge (A > 0) produces a = L(D) solution, and gives the new downstream ve-
new mean field with an anticyclonic shear layer at all locity field. With Do and UL known, the mass balance
finite x < 0. Farther downstream a transition to the for x < x0 gives X(D) and the new vorticity field up-
supercritical branch (cf. Fig. 3b) of the new steady so- stream from the strait.
lution occurs, with cyclonic vorticity appearing in the This outline of the calculation will now be carried
trough region (Fig. 4). This (incomplete) picture of out for the simplest case of large W1 (cf. Eq. (2.7)]. in
the temporal evolution provides the motivation for the which case the upper-layer velocity (2.9a) is nearly
following "self-consistent" steady long-wave theory. equal to unity (U0 = I) at all x, and U = I + ýL

Let x0 in Fig. 4 denote the (unknown) zero crossing beneath the interface in the cyclonic (x > x)) region.
point of the interface, let Do denote its distance from The steady mass balance for this region then becomes
the curved wall, and let U' denote the (unknown) hor- (I + ýL)(D - L) = Do, or
izontal velocity at x0 . This velocity must have the same
value in both layers because L(Do) = 0 implies that L' - L D - + (Do - D)/1 = 0. (2.12)
there is no vorticity at x0. Since the total volume trans-
port between the two walls must have the same value For the (0. R) values listed subsequently, the zero-
at all t, x (even at x = ±oo in the transient region), it crossing point is at xo < 0 and therefore D < Do in x0
follows that the transport UNDof3 + U•WI, at x0 must < x < 0. Since L > 0 as D - Do - 0-, Eq. (2.12)
equal the original transport W, + #3 at x = -oo, or requires

1+fl/W Dow> I = R
U0= 1 + D/W" (2.10) = , (2.13)

Let L(x) > 0 be the interface displacement in the x and therefore, the solution that vanishes at xo is

x0 region, and let X(x) >, 0 be the interface displace- 2L(= D-)
ment in the x < x0 region. By applying mass conser-
vation to the former region (as done previously), and
using L(D 0) = 0, a solution for L(D) is obtained con- (D- - 4(D0 - D)/ I > 0. (2.14)
taining one unknown (U0). Since the blocking con-
dition minD < D, is satisfied, the solution requires a
branch point with dL/OD = oo, and with i9L/ax = (ZL/ Downstream from the branch point (x = 0) defined
aD)(aD/ax) finite. Therefore the branch point must by (2.11) the appropriate solution of (2.12) is

2L = -D- + [ ( )D - 4(D 0 - )]"

/4 ZZ /z2XiziZ...z•. (2,15)
I W 4 .

W, y-, ., and the branch point (D - D,,) occurs where the dis-
SU;0  criminant vanishes, or

--- -•• I --------

we.. o o t 0= (Din - 4) . -4(L

FiG. 4. The modification of the upstream flow by a topographic
blocking wave. The minimum width D,, of the deep channel is at x Therefore the zero-crossing point of the interface occurs
= 0. A wiggly arrow indicates the upstream propagation of the an- where
ticyclonic vorticity ('_ > 0) layer of thickness X(x) > 0. This produces
a reduction of the lower-layer velocity ( UE) relative to the undisturbed - 1)2
velocity( =tI)atx= - o.rAtx>Yoacompensatingcyclonicvorticity Do= Dm + . (2.16)
( > 0) of thickness L(x) > 0 develops downstream. At largefinite 4
distances upstream from the obstacle, and at large finite time after
startup. a steady state is assumed, even tnough the blocking wave Equations (2.14)-(2.16) give the new downstream
continues propagating to x -- -x. state (L > 0) after blocking occurs; but (2.13) restricts
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the solution to the parametric regime I <•h (ýD,,,! IfD,,, is less than the lower bound in (2.17) then a sign
2 ± 12,) or ýD,,, > 1. and by combining this with change in vo is suggested ( by the above value ofx(i,
(2.9) we get = 0), in which case a separate calculation is necessary.

< D < 2- !-,-2 (2.17) The foregoing calculation also does not apply when R
exceeds the bound in (2.5b). because the current at.x

[3- I = - c is strong enough to prevent upstream topo-

R= > graphic wave propagation.
This steady longwave theory neglects the possibility

for the restricted D, range. of persistent short wave effects, such as are bound to
The X - 0 solution for x •< xr is obtained by noting occur (as "shocks") in the temporal evolution. These

that U = I - Xý_ is the velocity below the escarpment eddy effects might be studied in a finite difference corn-
in H-ig. 4, where I_ = ý/[. Thexefolt tht total transport putation using a smooth continental slope model, such
below the interface is as appears in the Appendix.

DflU_ + I (I+ ±()X = Dof3 3. The two-escarpment model of a strait
2

or Figure 2 has a greater geometric resemblance to a
strait, and a jetlike (L, > 0, L2 > 0) solution is sought

A1 ) -2[ when W, = 1 = W2 provide the length scale. The cy-
- -clonic vorticity ý is given by ( 1.1 ), and the (magnitude

of the) anticyclonic vorticity ý_ is given by ( 1.2). The
I uniform velocities on the upper and lower shelf are

I >D>Do>D,>(. given, respectively, by U, = U- •'L, U2 = U- L 2ý_,

where U is the uniform velocity between the interfaces.
These inequalities imply O' - [3D < 0, and therefore What is min(D) for a hydraulic or for a separating
the solution of (2.18) satisfying X >• 0 is transition in this model?

1 [ )2 11/2 For the lowest layer (Fig. 2) of uniform potential
X= - O -[3D + - [3D + 2[3(D - Do)/•- vorticity and unit depth the total volume transport ( U

- L2ý')( I - L21 at any D(x) must equal unity, or
(2.20)1

At x < xo, U_ = I - XA- becomes U = - +L 2 -. (3.1)

U- = D - ( D2 D- 2ýDo + 1)1/2, (2.21) In the middle layer between the two interfaces, the total

and far upstream (D - 1) the velocity is volume transport [U(D - LI) + (U - L2g-/2)L 2equals [3W0, or
U_(-OC) = ý •2 - 2g'Do + 1)1/2, (2.22) eul Wo

LU = UD - Wo + [6-'(U - L2 /2)L 2 . (3.2)

where Do is given by (2.16).
These results may be summarized as follows. No In the uppermost layer the transport balance is

blockingoccurswhen the minimumchannelwidth D, U - ýLl + O3(U - ýLI/2)L1 = 1. (3.3)
exceeds the upper bound in (2.17), and in this case The values of ([, R, H' ) necessary to justify the L,
the original upstream flow merely produces a sym-
metrical trough L(x) >_ 0 in the vicinity of the obstacle. > 0, L2 > 0 assumpt;on are obtained by letting x --ao , L, 0- , L2 --- 0, U - I - iA -- 0WO. 1-D
When D, is slightly less than the upper bound in 2M(x) - 0'. In this region the linearization of
(2.17), Eq. (2.16) gives Do -. 1, which means x0  ne
- A 0', and L(x) > 0at all x. But there is a (3.1)-(3.3) yields

branch point at x = 0, and a transition from (2.14) to = (I + -4)L2,
(2.15), so that at x = + ixi we get 2L = 2(I - I / +)
> 0. If D, is decreased further below the upper bound L, = pWO - 2M + fL-

in (2.17) then Do < 1 in (2.16), x0 becomes finite
negative, X(x) > 0, and a finite modification of the
upstream state (Fig. 4) occurs in which anticyclonic and consequently
vorticity appears, in addition to the cyclonic vorticity 2M( " - 3)
in the L > 0 strip which extends far downstream. When L2 = -

D,, equals the lower bound (n') in (2.17) then Do I + OW - (I -3)[(1 + •-)Wo + 3•-1

1 / " = Dm so that Xo 0, and the modified upstream (3.4)
velocity (2.22) is I + ý_

U ýU2 112 < L = L - ,2.
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The last equation requires TAL.Li lb. Same as-rabic laexcept d- 1.5. The symb)l SindicatcS
a separation transition. A blank entry indicates no trawsition (thc

- 1 upstream flow is not suberitical).R< , (3.5)RH

and since M > 0 Eq. (3.4) requires
R I 2 4 8 32( 0 f ) [ ( 1 + •' _ ) o + l - 1 1 - ( 1 + ý __ ) > 0 . ( 3 .6 ) 1 4-1 8 . 4 . s2 -1/4 - 1.88 H 3.14 S 5.6 S 22) H-

When this is multiplied by 0 and when j3•.. =is used, .355 .036 .016 .245
we get 1.358 1.603 1.619 [-439

1.167 1,297 1.306 1.209

('- )[(" + (3)Wo + 1] - (•" + (3)> 0 1/6 .91 H 1.51 H 2.60 H 4.80 H 27.8 H

.703 _2435 .176 .179 .847
or 1.296 1.756 1.823 1.820 1.152

2 t + . LO <- 1)2 ( )1.105 1.297 1.328 1.327 1.052
32 + 200 < (= 3 (3.7) 1/10 .70 H 1.16 H 2.12 H 4.00 H 15.0 H

.51 .31 .35 .344 .314
1.875 2.165 2.107 2.119 2A16

This condition for positive (LI, L2 ), as well as the one 1.236 1.332 1.312 1.316 1.33

in (3.5) is obviously satisfied for sufficiently smallRossby number. 1/20 .48 H .82 H 1.48 H 2.88 H 10.8 H
.344 .358 .338 .371 .342

The significance of(3.7) appears by considering the 2.975 2.9.15 2.998 2.918 2.980

conditions under which the basic flow at x = -o can 1.328 1,322 1.333 1.316 1.329
support a free (i.e., M(x) -= 0) stationary long wave
of infinitesimal amplitude. Equation (3.4) implies that
this will occur when the denominator vanishes, or when
the left-hand side of(3.6) vanishes, or when an equality it will now be shown that neither L1 nor L2 can
sign replaces the inequality in (3.7). The latter equality change sign farther downstream in the region where
then gives the Rossby number for a stationary long their amplitudes are finite. Suppose the contrary were
wave, and for smaller R the long wave propagates up- true, and let x' denote the smallest x at which either
stream. It is under the latter condition (3.7) that a L( or L2 vanish U f L2(x') = 0 with Ld (x') > 0 thensteady forced solution with L• > 0, L2 > 0 for D(x) (3.1i) yields U = I, and (3.2) yields D = W0 + L1steay frce soltio wih L,> 0 L2> 0 or ~x)> Wo, which contradicts the initial assumption (Fig.
< Wo is obtained. (See the previous argument in con- 2) wh conrIcts the itial au t (Fig.nection with Fig. 3c.) 2) that D(x) <• Wo'. If, on the other hand, L1 (x') = 0

with L2 (x') > 0 then (3.3)gives U = 1, whereas (3. 1 )
gives U > 1, and thus a contradiction is again obtained.

TABLE la. Critical values of the parameters for the two escarpment Therefore all admissable solutions of the nonlinear
model (section 3 and Fig. 2)when 0 = 2, and for various values of equations (3.1)-(3.3) have positive LI, L2 if (3.7) is
Ki. it,. The first row for each entry is the minimum D, and the satisfied.
following rows are U1 , U, U2 , respectively. The symbol H indicates The solution of the nonlinear equations is obtained
a hydraulic or blocking transition, by multiplying (3.1) with I - L2, by multiplying (3.3)

with ( I - L2)3U2, and by eliminating both LIU and
U from (3.3) to obtain a seventh-order polynomial

R 1 2 4 8 32 equation for the single unknown L2. The very large
number of terms in the coefficients of this polynomial

.544 .168 .178 A.70 .769 were assembled by a symbolic computer program, and
1.455 1.831 1.821 1.829 1.230 then the L2 root was computed by a careful numerical
1.167 1.332 1.327 1.331 1.080 search for the zero-crossing point of the polynomial.

1/6 .68 H 1.16 H 2.12 H 4.36 H 15.68 H Since this starts from a point far upstream where L2 is
.383 .302 .294 .426 .303 very small, very small L2 increments must be taken in

1L961 2.068 2.078 1,903 2.066 the search, and then small D increments must be taken
1.288 1.327 1.331 1.268 1.326 to remain on the same branch of the seventh-order

1/10 .52 H .92 H 1.72 H 3.30 H 12.8 H polynomial as one proceeds downstream. The run ter-
.386 .389 .389 .380 .377 minates at that D = Dc, for which there is either no

2.507 2.501 2.500 2.517 2.524 root ("hydraulic transition" point) or one of the ve-
1.313 1.312 1.311 1.316 1.317 locities (U j ) turns negative ("separation"). Tables

1/20 .36 H .62 H 1.24 H 2.2 H 8.64 H I a,b,c list the solution for various values of 03, R, WI,
.340 .286 .417 .283 .304 and the letter H or S indicates the type of critical point.

3,647 3.787 3.439 3.795 3.742 For example, when 3 = 1.5 (Table lb), R = I/10, 1¢O
1.305 1.326 1.276 1,327 1.319 = 1, a hydraulic transition (H) occurs (first) when the
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TAB[ F IC. Same as Tables la. lb except I - 1.25. pear in the diverging half. The local flow may become
hydraulically critical in which case the generated to-

110, pographic blocking wave modifies the upstream state
as well as the downstream state (Fig. 4 and section 2).

R 1 2 4 8 32_ In the second kind of transition an everywhere sub-
1/4 - - - critical jet may separate because of the relative vorticity

generated in the narrow part of the strait [cf. Fig. 5b
1/6 - - - 6.082 21.6 S and Stern and Whitehead ( 1990)].

.027 .007

1.527 1.543 Both transitions are examples of purely inertial (as
1.271 1.280 contrasted with diffusive) mechanisms for generating

1/10 .94 H 1,59 H 2.68 H 4.88 H 1.24 H inshore vorticity in the passage of currents through
.758 .336 .174 .179 .198 straits. They may therefore be relevant to the expla-

1.241 1.663 1.825 1.820 1.801 nation of the large cyclonic vorticity in the Straits of
1.084 1.256 1.329 1.327 1.318 Florida, and to the explanation of the reformation of

1/20 .67 H 1.12 H 1.96 H 3.68 H 14.0 H the western boundary jet in the vicinity of the Straits
.546 .410 .336 .337 .347 of Yucatan.

1.981 2.209 2.327 2.326 2.311
1.230 1.295 1.331 1.331 1.326

u
minimum channel width is D = 0.70, and at this section 1.5
U, = 0.5 1, U = 1.875, U2 = 1.236. The accuracy of O2
the roots was checked by using those values to compute
the local volume flux, and by comparing the result with 1
the flux at x = -oc.

The downstream evolution of the jet is illustrated in
Fig. 5a for Wo = 8, R = 1/6,/3 =1.5. This shows that
as x increases from -oc (where D = 8), ,.lc value of 0.s
U, decreases and a hydraulic transition point occurs
at D = 4.80 with minUl > 0. At a larger R (Fig. 5b),
with other things being equal, a separation (U1 = 0)
transition occurs first at D = 5.6. In both cases a jet 0
(U > U2 > U1 ) forms, but Tables I a,b,c indicate that 4 5 6 7 8
the separation regime is relatively restricted, occurring
only for the larger Rossby numbers and for the smaller
topographic effect (/3 1). The table also shows that
decreasing R, with fixed W0 and #, requires a decreasing U
Dit (i.e., a greater strait convergence) for a critical 1.5
state, and the accompanying maximum jet velocity U - 2

is increased.
When blocking occurs in Fig. 2 the new state that 1

arises could be obtained by generalizing the procedure
in section 2, but the algebra then becomes formidable.

Interesting variations in Fig. 2 and Fig. 4 might be
obtained by less restrictive shelf widths (W1, W2), in 0.5
which case separation might be more prevalent. The
effect of a sill might be obtained by allowing /3 to vary
with D. It may also be possible to replace the rigid
bottom in the central channel (Fig. 2) by an interface 0...
beneath which the fluid density increases, and above 5 6 7 8
which the potential vorticity is (piecewise) uniform.
Then the important role of buoyancy on the blocking D
cou!d be ascertained. FIG. 5. (a) Downstream variation of velocity in Fig. 2 when

minD(x) equals the critical value for a hydraulic transition, and
whenr Wo = 8 = D( -i ), R = 1/6, # = 1.5. U, is the uniform velocity

4. Conclusions on the upper shelf, (U2 is the velocity on the lower shelf, and U is the
uniform velocity between the two potential vorticity interfaces. A jetA jet can be generated by inviscid cross-isobath flow with U > U2, U > U, forms at the transition point D = 4.8. (b)

through the converging half of a strait, and two types Same as (a) except that R = 1/4. In this case a separation transition
of transition may allow the generated vorticity to ap- (uL = 0) at D -- 5.6 occurs before a hydraulic transition.
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Similar kinds of transitions could occur in a purely TABnti 2. Minimum channel width (1U I,,) for Nlocking as a

continental type of topography (cf, Stern 1991, Fig. function of the inverse continental slope (s). Hcre u( - )) is the cor-
2), such as is obtained by removing the sidewall in responding velocit at the curved (lower) wall, and ut I) is the veociit%

at the upper wall: R -- Vy). #3 ý 1.5, 11, - 1, See Apendix tor
deep water and curving the sidewall on the shelf. I definitions.
would like to take this opportunity to correct an omis-
sion in that paper (Stern 1991 ). A term i sinhke v D,,, utl) 14( 1))
+ coshkt should appear in the denominator of the in-
tegral of Eq. (4.9), but this term equals unity in the '0 .499 .400 3.29
long-wave (k - 0) limit, and consequently the omis- 5 513 .222 3.30
sion affects none of the equations following (4.9). 2.5 .535 .286 2.71

.687 .166 1.43
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APPENDIX D [as a function of u( I )] is reached. This gives the

A Smooth Continental Slope critical amplitude of the obstacle necessary to block
the upstream flow, and to cause a hydraulic transition.

For previously mentioned reasons it is important to Calculations were made for the hyperbolic tangent
compare the critical blocking condition for the escarp- profile
ment model in Fig. 3a with the value obtained for a h(y) p tanh(sy) + p tanhs + 1 (A.7)
smoother nondimensional cross-stream topography t +
h(y) that is also independent of x. For this calculation -
it is convenient to take the distance W, = I of the P -- th
upper wall from the y = 0 datum (defined below) as

the unit of length, with y = -D(x) as the ordinate of whose maximum slope defines the y = 0 datum level,
the curved lower wall, and with D(-oo-) = W0asa free and which satisfies h(1) = 1, h(- WO) = (. The free
parameter. The uniform velocity at x = -o0 is again parameter s is a measure of the inverse width of the
taken as the velocity unit, that is, U0 = 1. continental slope, and s -- o0 gives the escarpment

If0 = 0(y) denotes the ordinate at x = -co of the limit in Fig. 3a.
steady streamline whose ordinate is y at D(x), then A second-order Runge-Kutta integration was used
the Lagrangian volume conservation equation in non- to solve Eqs. (A. I )-(A.3), and the step size used was
dimensional units is checked by comparing the total volume transport at x

dA with an analytic calculation at x = - x0. Table 2 gives
u(y) dq (A.1) the results for four finite s when Wo = I, R = 1/30,o,

dy = 1.5. The s = oo entry was obtained from (2.4b) for

h(O) the escarpment model in section 2, and we conclude
q - (A.2) that the critical value of D for blocking is essentially

h(y) ' the same in the interval 5 < s < oo, thereby validating

and the potential vorticity conservation equation is the asymptotic consistency of the escarpment model.
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